Информатика


           

и при подстановке формулы второго


= (-b2 + D)/(4×a) + с = (-b2 + b2 - 4×а×с)/(4×а) + с = -4×а×с/(4×а) + с = 0.

Аналогичные результаты получаются и при подстановке формулы второго корня

х2

= (-b -
)/(2×a). После выполнения анало­гичных преобразований будет получено такое же тождество. И на основании этих проверок можно сделать заключение, что рассмот­ренный метод дает правильные результаты для любык допустимых данных.

Однако саму постановку задачи необходимо дополнить условием: b2

- 4×а×с ³ 0. При нарушении этого условия не только уравнение не имеет решений, но и метод решения также не дает результатов из-за необходимости вычисления корней от отрицательного дискриминан­та: D < 0.

В силу выбранного метода решения и принятой постановки алго­ритм решения квадратных уравнений приобретает следующий вид:

алг «квадратное уравнение»                       Результаты вычислений

нач

если а ¹ О то                                                при а ¹ 0

D: = b*b - 4*а*с                                        D = b2 - 4×а×с

если D > = 0 то                                             при D >= 0

х1:

= (-b
+
)/(2*a)
                                   х1 = (-b +
)/(2×a)

х2:

= (-b
-
)/(2*a)
                                   х2 = (-b -
)/(2×a)

 все

инеc а = 0 то                                                 при а = 0

если b ¹ 0                                                       при b ¹ 0

х 1: = -c/b                                                     xl = -c/b

все

кон

Результаты выполнения алгоритма приведены справа. Можно заметить, что результаты выполнения совпадают с описанием вы­бранного метода решения с помощью дискриминанта. Это позволяет утверждать, что алгоритм - правильный.

Алгоритм содержит ошибки, если можно указать допустимые ис­ходные данные, при которых либо будут получены неправильные результаты, либо результаты не будут получены вовсе.

Содержание  Назад  Вперед





Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий