Èíôîðìàòèêà


              

Ê ÷èñëó óïðàâëÿþùèõ îïåðàòîðîâ ìîæíî


sin (x)              - ñèíóñ                                                sin

(0)
                                      0

cos (x)             - êîñèíóñ                                            cos

(0)
                                     1

tan (x)             - òàíãåíñ                                             tan

(0)
                                     0

atn (x)             - àðêòàíãåíñ                                       atn (0)                                     0

exp (x)             - ýêñïîíåíòà                                      åõð (0)                                     1

log (x)              - ëîãàðèôì íàòóðàëüíûé                  log (1)                                      0

Ê ÷èñëó óïðàâëÿþùèõ îïåðàòîðîâ ìîæíî îòíåñòè óñëîâíûå îïå­ðàòîðû, èìåþùèå ñëåäóþùèå ôîðìó çàïèñè è ñìûñë:

Óñëîâíûé îïåðàòîð:                                     Äåéñòâèÿ ÝÂÌ:

if <óñëîâèå> then <îïåðàòîð>                   åñëè <óñëîâèå> òî <äåéñòâèå>

ãäå <îïåðàòîð> - ýòî îäèí èëè íåñêîëüêî îïåðàòîðîâ, ðàçäåëÿåìûõ äâîåòî÷èåì, à <óñëîâèå> - ýòî íåêîòîðîå ëîãè÷åñêîå óñëîâèå, ïðè ñîáëþäåíèè êîòîðîãî áóäóò âûïîëíÿòüñÿ óêàçàííûå îïåðàòîðû.

Ïðèìåðû çàïèñè óñëîâèè - ïðîñòûõ è ñëîæíîñîñòàâíûõ:

Óñëîâèå:                                             Çàïèñü:

õ = ó                                                    õ = ó

õ ¹

ó                                                    õ <>

ó


õ > ó                                                    õ > ó

õ < ó                                                    õ < ó

õ £

ó                                                    õ <= ó


õ ³

ó                                                    õ >= ó


íå (õ = 1)                                            not (x = 1)

(õ > 0) è (ó > 0)                                  (õ > 0) and (ó > 0)

(à = 0) èëè (b = 0)                              (à = 0) or (b = 0)

Ïðîñòåéøèì ïðèìåðîì ïðîãðàììû ñ óñëîâíûìè îïåðàòîðàìè ÿâëÿåòñÿ ðåàëèçàöèÿ àëãîðèòìà «âûáîð èç ìåíþ»:


Ñîäåðæàíèå  Íàçàä  Âïåðåä