Суждения в математической логике могут быть простыми и сложносоставными. Примеры простых суждений:
х = 1 рост < 160
А цена (х, у)
Сложносоставные суждения в математической логике образуются из простых с помощью логических связок и, или и
не, выражающих три основных логических операции:
логическая связка не -
отрицание суждений;
логическая связка или - конъюнкция
суждений;
логическая связка и -
дизъюнкция суждений.
Примеры сложносоставных суждений:
не А - неверно суждение А
С или В - истинно С или В
(х > 0) и (у > 0) - (х больше 0) и (у
больше 0)
(глаза = синие) или (глаза = голубые)
Логическая связка не используется для выражения отрицаний. Примеры:
не (глаза = синие), - неверно, что глаза синие
не (А или
В), - неверно, что выполняется А или В
не (любит (Саша, конфеты)) - неверно, что Саша любит конфеты
Наглядной иллюстрацией этих логических связок с предикатами служат следующие диаграммы:
Отрицание не А истинно или ложно в зависимости от истинности исходного суждения А. Свойства отрицания не как логической связки можно описать таблицей истинности:
Таблица истинности:
А не А
да |
нет |
нет |
да |
Свойства отрицаний:
НЕ1: Отрицание ложно, если суждение истинно.
НЕ2: Отрицание истинно, если суждение ложно.
Для понимания отрицаний важно уметь выражать их в позитивной форме. Приведем примеры отрицания математических неравенств и их позитивные переформулировки:
не
(х = 0) º (х ¹ 0)
не (х ¹
0) º (х = 0)
не
(х > 0) º (х £ 0)