это неправильное решение, так как
2.(1) +1= 3 ¹ 0.
Следовательно, значение х1 = 1 - это неправильное решение, так как оно противоречит требованиям и не может быть корнем уравнения.
Подстановка второго решения х2 = -1/2 в уравнение дает тождество
2.(-1/2) +1= 0.
Таким образом значение х2 = -1/2 удовлетворяет исходному уравнению и является правильным решением.
Способ решения правильный, если он дает правильные результаты. Для определения правильности способов решения задач необходима четкая постановка решаемых задач, в которых должны быть строго определены требуемые результаты.
Способ - неправильный, если его применение приводит к получению неправильных результатов либо вовсе не дает никаких результатов. Использование неправильных способов решения может вообще не давать результатов.
Способы могут быть частными и общими.
Частные способы
дают конкретные решения частных задач. Частный способ может оказаться неприменимым для решения сходных задач, отличающихся деталями.
Общий способ может давать решения для целого класса задач, отвечающих определенным исходным условиям и отличающихся друг от друга конкретными исходными данными.
Так, для рассмотренной задачи решения уравнения 2-х + 1 = 0 можно использовать общий способ решения линейных уравнений вида
а×х + b = 0:
х0 = - b/а.
Применение этой формулы при а = 2, b = 1 дает решение х0 = - b/а = -1/2, которое нам уже известно как правильное.
В правильности общего способа решения уравнений вида а×х + b = 0 можно убедиться подстановкой формулы х0 = - b/а в само уравнение:
а×х + b º а×(- b/а) + b º -b + b º
0.
При
постановке обобщенных задач кроме выделения требуемого необходимо определить исходные условия, при которых должно быть получено требуемое. В такой постановке задач должно быть определено, какие исходные условия будут считаться допустимыми, а какие нет.
Постановка задачи:
Содержание Назад Вперед